
5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 1/22

Jake's Ultramarathon Training
Welcome to a typical Pluto notebook! This typically starts with

Packages needed
Initial data exploration

Packages Installed
Pluto maintains it's own package environment per-notebook
The checkmark means it is installed.
The little cloud icon means it will be installed when ran

md"""
Jake's Ultramarathon Training

Welcome to a typical Pluto notebook! This typically starts with

- Packages needed
- Initial data exploration
"""

1
2
3
4
5
6
7
8

begin
using DataFrames
using CSV
using PyCall
using Conda
using Dates
using Plots
using Statistics
using StatsBase
using StatsPlots

end

1
2
3
4
5
6
7
8
9

10
11

md"""
Packages Installed

- Pluto maintains it's own package environment per-notebook
- The checkmark means it is installed.
- The little cloud icon means it will be installed when ran
"""

1
2
3
4
5
6
7

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 2/22

:Timestamp nothing "2023-01-01 00:00:00" nothing "2023-04-05 00

:Type nothing "Sleep Hours" nothing "Weight Pounds

:Value 7.51523 0.0 3.05 205.3

:ParsedTimestamp nothing 2023-01-01T00:00:00 2023-02-19T00:00:00 2023-04-05T00:

1
2
3
4

First Steps
Usually a good idea to describe the dataframe that you have
Peform any cleaning needed

New Columns
Defined using the . format
Uses broadcast over the existing Timestamp column that is a string
Better for plotting and programmatic usage.

variable mean min median max

begin
workouts = CSV.read("workouts.csv", DataFrame);
metrics = CSV.read("metrics.csv", DataFrame);

Start with some average time in each stage. Timestamp should be in a more usable

format.

metrics.ParsedTimestamp = DateTime.(metrics.Timestamp, dateformat"y-m-d H:M:S")
describe(metrics)

end

1
2
3
4
5
6
7
8
9

md"""
First Steps

- Usually a good idea to describe the dataframe that you have
- Peform any cleaning needed

New Columns

- Defined using the `.` format
- Uses broadcast over the existing Timestamp column that is a string
- Better for plotting and programmatic usage.
"""

1
2
3
4
5
6
7
8
9

10
11
12

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 3/22

Sleep During Training
How well did I sleep during training?
Was I consistent in my sleep?
Hypothesis, probably not

md"""
Sleep During Training

- How well did I sleep during training?
- Was I consistent in my sleep?
- Hypothesis, probably not
"""

1
2
3
4
5
6
7

begin
Sleep data, with outliers trimmed (didn't wear my watch)

row_selector = (metrics.Type .== "Sleep Hours") .&& (metrics.Value .< 9.) .&&
(metrics.Value .> 6)

sleep_hours = metrics[row_selector, [:Value, :ParsedTimestamp]]

Plot it

scatter(sleep_hours.ParsedTimestamp, sleep_hours.Value, xlabel="Date",
ylabel="Hours Slept", title="Sleep over Training, Parent Edition")

end

1
2
3

4
5
6
7
8

9

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 4/22

Answer
No, I was not consistent in my sleep at all.
Probably due to toddler
Or potty training
Or having aching legs...
I digress.

Follow up
Were my averages week to week consistent?

md"""
Answer

- No, I was not consistent in my sleep at all.
- Probably due to toddler
- Or potty training
- Or having aching legs...
- I digress.

Follow up

Were my averages week to week consistent?
"""

1
2
3
4
5
6
7
8
9

10
11
12
13

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 5/22

begin
weeks = length(sleep_hours.Value) ÷ 7
week_sleeps = [sleep_hours.Value[i:min(i+7, length(sleep_hours.Value))] for i ∈
1:7:length(sleep_hours.Value)]
mean_week_sleeps = mean.(week_sleeps)

scatter(1:length(mean_week_sleeps), mean_week_sleeps, ylims=(6.0, 8.5),
xticks=1:1:length(mean_week_sleeps), ylabel="Hours Slept", xlabel="Weeks",
title="Mean Sleep Per Week", legend=false)

end

1
2
3

4
5
6

7

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 6/22

Answer
Yes, my averages week to week were consistent.
Between 7-7.5 hours of sleep usually.

Methodology
Creates segments of max length 7 sleep observations
Takes the mean of each segment
Plot those means

Next Up
Reading my workout data

md"""
Answer

- Yes, my averages week to week were consistent.
- Between 7-7.5 hours of sleep usually.

Methodology

- Creates segments of max length 7 sleep observations
- Takes the mean of each segment
- Plot those means

Next Up

- Reading my workout data
"""

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 7/22

Reading Workout Data
Data is stored in .FIT files
I failed to write the Garmin FIT SDK in time for Julia
Use PyCall and Garmin's Python SDK!

Running `conda config --set pip_interop_enabled true --file /Users/jacobwindle/.j
ulia/conda/3/aarch64/condarc-julia.yml` in root environment

Running `pip install /Users/jacobwindle/Downloads/FitSDKRelease_21.105.00/py` in
root environment

 Processing /Users/jacobwindle/Downloads/FitSDKRelease_21.105.00/pyProcessing /Users/jacobwindle/Downloads/FitSDKRelease_21.105.00/py
 Installing build dependencies: startedInstalling build dependencies: started
 Installing build dependencies: finished with status 'done'Installing build dependencies: finished with status 'done'
 Getting requirements to build wheel: startedGetting requirements to build wheel: started
 Getting requirements to build wheel: finished with status 'done'Getting requirements to build wheel: finished with status 'done'
 Preparing metadata (pyproject.toml): startedPreparing metadata (pyproject.toml): started
 Preparing metadata (pyproject.toml): finished with status 'done'Preparing metadata (pyproject.toml): finished with status 'done'
Building wheels for collected packages: garmin-fit-sdkBuilding wheels for collected packages: garmin-fit-sdk
 Building wheel for garmin-fit-sdk (pyproject.toml): startedBuilding wheel for garmin-fit-sdk (pyproject.toml): started
 Building wheel for garmin-fit-sdk (pyproject.toml): finished with status 'donBuilding wheel for garmin-fit-sdk (pyproject.toml): finished with status 'don
e'e'
 Created wheel for garmin-fit-sdk: filename=garmin_fit_sdk-21.105.0-py2.py3-noCreated wheel for garmin-fit-sdk: filename=garmin_fit_sdk-21.105.0-py2.py3-no
ne-any.whl size=134176 sha256=10bc4195228a000d8e2458265e5583043a13df91dfe5e8e3dne-any.whl size=134176 sha256=10bc4195228a000d8e2458265e5583043a13df91dfe5e8e3d
4b0047a1ca529e64b0047a1ca529e6
 Stored in directory: /private/var/folders/mr/vq80v4cn4rgdtl1pbfrcfvvr0000gp/Stored in directory: /private/var/folders/mr/vq80v4cn4rgdtl1pbfrcfvvr0000gp/
T/pip-ephem-wheel-cache-06p5moqu/wheels/ce/6d/b8/b728a6064b9404f496915e7dec78a1T/pip-ephem-wheel-cache-06p5moqu/wheels/ce/6d/b8/b728a6064b9404f496915e7dec78a1
d6ce0927e9e2d73bbe8ad6ce0927e9e2d73bbe8a
Successfully built garmin-fit-sdkSuccessfully built garmin-fit-sdk
Installing collected packages: garmin-fit-sdkInstalling collected packages: garmin-fit-sdk
 Attempting uninstall: garmin-fit-sdkAttempting uninstall: garmin-fit-sdk
 Found existing installation: garmin-fit-sdk 21.105.0Found existing installation: garmin-fit-sdk 21.105.0
 Uninstalling garmin-fit-sdk-21.105.0:Uninstalling garmin-fit-sdk-21.105.0:
 Successfully uninstalled garmin-fit-sdk-21.105.0Successfully uninstalled garmin-fit-sdk-21.105.0
Successfully installed garmin-fit-sdk-21.105.0Successfully installed garmin-fit-sdk-21.105.0

md"""
Reading Workout Data

- Data is stored in .FIT files
- I failed to write the Garmin FIT SDK in time for Julia
- Use PyCall and Garmin's Python SDK!
"""

1
2
3
4
5
6
7

begin
Install the Garmin SDK into our Notebook environment.

Conda.pip_interop(true)
Conda.pip("install", "/Users/jacobwindle/Downloads/FitSDKRelease_21.105.00/py")

end

1
2
3
4
5

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 8/22

Python Interop
Useful because I failed at writing the FIT SDK
Use Pip interop in this case, install with local filepath
Now time to read all the FIT files

[Dict("79" => [Dict(more)], "lap_mesgs" => [Dict(more), Dict(more), Dict(more)

md"""
Python Interop

- Useful because I failed at writing the FIT SDK
- Use Pip interop in this case, `install` with local filepath
- Now time to read all the FIT files
"""

1
2
3
4
5
6
7

begin
@pyimport garmin_fit_sdk

fit_files = readdir("./fit_files"; join=true)

function decode_fit_file(fp::AbstractString)::Tuple{Any,Any}
stream = garmin_fit_sdk.Stream.from_file(fp)
decoder = garmin_fit_sdk.Decoder(stream)
try

decoder.read()
finally

stream.close()
end

end

decoded = []
for file ∈ fit_files

push!(decoded, decode_fit_file(file))
end

decoded_fit_files = [dc[1] for dc in decoded]
end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 9/22

Reading the FIT files
Function decodefitfile will use the Garmin Python SDK to read fit file
Use combo listcomp and broadcast to decode all files

Getting my Heartrate Data
From clicking through data, all heartrate information is in record_mesgs
Convert record_mesgs into a dataframe for each date

md"""
Reading the FIT files

- Function decode_fit_file will use the Garmin Python SDK to read fit file
- Use combo listcomp and broadcast to decode all files

Getting my Heartrate Data

- From clicking through data, all heartrate information is in `record_mesgs`
- Convert `record_mesgs` into a dataframe for each date
"""

1
2
3
4
5
6
7
8
9

10
11

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 10/22

[(2023-01-02T16:53:51,

542.0 0.0 433472571 90 1.344
542.0 1.42 433472469 90 1.325
543.8 19.84 433471179 86 2.911
545.8 32.86 433470431 90 2.799
546.2 35.65 433470266 94 2.799
546.8 38.42 433470114 98 2.79
547.2 41.19 433469959 103 2.762
547.8 44.2 433469806 109 2.762
548.0 47.25 433469642 114 2.781
548.4 50.44 433469481 119 2.837

505.4 7356.13 433260335 150 2.687

1
2
3
4
5
6
7
8
9
10

more

418

altitude distance position_lat heart_rate enhanced_spee

begin
function string_keys(d::Dict{Any,Any})::Dict{String,Any}

Dict([k => v for (k, v) in d if k isa AbstractString])
end

function extract_record_and_timestamp(fit_file::Dict{Any, Any})
ts = DateTime(fit_file["activity_mesgs"][1]["timestamp"])
messages = string_keys.(fit_file["record_mesgs"])

try
ts, DataFrame(messages)

catch
nothing

end
end

decoded_files = extract_record_and_timestamp.(decoded_fit_files)
end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 11/22

Mapping my data to DataFrame
Extract the data needed
Write function that pulls data out of PyDict

:altitude 506.938 471.8 500.6 558.4

:distance 3535.39 0.0 3474.36 7356.

:position_lat 4.33296e8 433204250 4.3326e8 43347

:heart_rate 145.935 86 146.0 166

:enhanced_speed 2.74143 0.0 2.827 3.863

:fractional_cadence 0.239234 0.0 0.0 0.5

:speed 2.74143 0.0 2.827 3.863

:position_long -9.82415e8 -982694531 -9.82404e8 -9821

:cadence 80.9234 0 82.0 89

:enhanced_altitude 506.938 471.8 500.6 558.4

:timestamp nothing 2023-01-02T16:08:19 2023-01-02T16:28:42.500 2023-

1
2
3
4
5
6
7
8
9
10
11

variable mean min median

md"""

Mapping my data to DataFrame

- Extract the data needed
- Write function that pulls data out of PyDict

"""

1
2
3
4
5
6
7
8

describe(decoded_files[1][2])1

Selection deleted

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 12/22

graph_run (generic function with 1 method)
begin

A generic graph_run function

function graph_run(decoded_file::Tuple{DateTime, DataFrame})
label = "Run on $(decoded_file[1])"
df = decoded_file[2]
l = @layout [a b; c d]
p = plot(df."timestamp", df."heart_rate"; title="Heart Rate", ylabel="BPM",
xticks=nothing)
p2 = plot(df.timestamp, df.altitude; title="Altitude", xticks=nothing)
p3 = scatter(df.timestamp, df.cadence, title="Cadence", xticks=nothing)
p4 = plot(df.timestamp, df.speed; title="Speed", xticks=nothing)
plot(p, p2, p3, p4, layout = l)

end
end

1
2
3
4
5
6
7

8
9

10
11
12
13

graph_run(decoded_files[14])1

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 13/22

Graphing Runs
Show speed, cadence, heartrate, and altitude
Trail runs appear to have varied cadence, road runs are more stable

Trends across Training
What was my average heartrate for each run?
Was my average heartrate effected by sleep?

md"""
Graphing Runs

- Show speed, cadence, heartrate, and altitude
- Trail runs appear to have varied cadence, road runs are more stable
"""

1
2
3
4
5
6

graph_run(decoded_files[19])1

md"""
Trends across Training

- What was my average heartrate for each run?
- Was my average heartrate effected by sleep?
"""

1
2
3
4
5
6

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 14/22

begin
function calc_avgs(data::Union{Nothing, Tuple{DateTime, DataFrame}})

if isnothing(data)
return nothing

end
try

return (timestamp=data[1], mean_hr=mean(data[2].heart_rate),
mean_cadence=mean(data[2].cadence), mean_alt=mean(data[2].altitude))

catch
return nothing

end
end

avg_heartrates = DataFrame(filter(f -> !isnothing(f), calc_avgs.(decoded_files)))

ps = scatter(avg_heartrates.timestamp, avg_heartrates.mean_hr, title="Avg
Heartrate over Time", label="hr", xlabel="Timestamp", ylabel="Beats per minute",
ylims=(115, 160))
hspan!(ps, [145, maximum(avg_heartrates.mean_hr)]; color=:red, alpha=0.2,
label="endurance run")
hspan!(ps, [minimum(avg_heartrates.mean_hr), 145]; color=:green, alpha=0.2,
label="recovery run")

end

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16

17

18

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 15/22

Determining if Heartrate was affected by sleep
Will need to use the workouts to determine which days were endurance runs
Find sleep data for same day
Stitch together to see results

md"""
Determining if Heartrate was affected by sleep

- Will need to use the workouts to determine which days were endurance runs
- Find sleep data for same day
- Stitch together to see results
"""

1
2
3
4
5
6
7

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 16/22

begin
Copy the existing dataframe.

hr_sleep_df = deepcopy(avg_heartrates)

Get the days that we have an endurance run

my_endurance_days = workouts[:, :WorkoutDay]

my_endurance_selector = [d in my_endurance_days for d in Date.
(hr_sleep_df.timestamp)]

my_endurance_days_df = hr_sleep_df[my_endurance_selector, :]
my_endurance_days_df.Date = Date.(my_endurance_days_df.timestamp)

sleep_on_endurance_days = [d in my_endurance_days for d in Date.
(sleep_hours.ParsedTimestamp)]
sleep_on_endurance_days_df = sleep_hours[sleep_on_endurance_days, :]
sleep_on_endurance_days_df.Date = Date.
(sleep_on_endurance_days_df.ParsedTimestamp)

sleep_hr_df = leftjoin(my_endurance_days_df, sleep_on_endurance_days_df; on =
:Date)
ns = scatter(sleep_hr_df.mean_hr, sleep_hr_df.Value; xlims=(120, 160),
title="Heartrate over Sleep", xlabel="BPM", ylabel="Hours Slept")
vspan!(ns, [140, maximum(sleep_hr_df.mean_hr)]; color=:red, alpha=0.2,
label="endurance run")
vspan!(ns, [minimum(sleep_hr_df.mean_hr), 140]; color=:green, alpha=0.2,
label="recovery run")

end

1
2
3
4
5
6
7
8

9
10
11
12
13

14
15

16
17

18

19

20

21

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 17/22

Findings
No discernible relationship
Appears to have clusters, left half is recovery, right half is endurance

Next Question
Does Cadence Affect HR?

md"""
Findings

- No discernible relationship
- Appears to have clusters, left half is recovery, right half is endurance

Next Question

- Does Cadence Affect HR?
"""

1
2
3
4
5
6
7
8
9

10

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 18/22

Findings
No relationship, because I always ran with the same cadence!

Next Question
Does altitude affect HR?

begin
cadence_hr_df = deepcopy(avg_heartrates)
cadence_hr_df.Date = Date.(cadence_hr_df.timestamp)

scatter(cadence_hr_df.mean_hr, cadence_hr_df.mean_cadence; xlabel="HR",
ylabel="Cadence", title="HR vs. Cadence")

end

1
2
3
4

5

md"""
Findings

- No relationship, because I always ran with the same cadence!

Next Question

- Does altitude affect HR?
"""

1
2
3
4
5
6
7
8
9

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 19/22

begin
altitude_hr_df = deepcopy(avg_heartrates)
scatter(altitude_hr_df.mean_hr, altitude_hr_df.mean_alt; xlabel="HR",
ylabel="Mean Altitude", title="HR vs. Altitude")

end

1
2
3

4

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 20/22

Findings
Altitude does appear to affect heart rate.
Majority of runs were not at altitude, show normal distribution
Runs at higher altitudes appear to cluster at higher HR

Next Questions
Do my data follow the normal distribution?

md"""
Findings

- Altitude does appear to affect heart rate.
- Majority of runs were not at altitude, show normal distribution
- Runs at higher altitudes appear to cluster at higher HR

Next Questions

- Do my data follow the normal distribution?
"""

1
2
3
4
5
6
7
8
9

10
11

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 21/22

Findings
Kind of normally distributed, but have two clusters
Recovery vs. Endurance again!

begin
d = fit(UnitRangeTransform, avg_heartrates.mean_hr)
hr_normalized = StatsBase.transform(d, avg_heartrates.mean_hr)

avg_heartrates.hr_normalized = hr_normalized
@df avg_heartrates histogram(:mean_hr; bins=25, title="HR Histogram")

end

1
2
3
4
5
6
7

md"""
Findings

- Kind of normally distributed, but have two clusters
- Recovery vs. Endurance again!
"""

1
2
3
4
5
6

5/1/23, 10:14 PM

localhost:1234/edit?id=b57ae5d8-e88e-11ed-1878-dd2f7227d1e8# 22/22

