Jake's Ultramarathon Training

Welcome to a typical Pluto notebook! This typically starts with

- · Packages needed
- Initial data exploration

```
1 md"""
2 # Jake's Ultramarathon Training
4 Welcome to a typical Pluto notebook! This typically starts with
5
6 - Packages needed
7 - Initial data exploration
8 """
```

```
1 begin
       using DataFrames
 2
       using CSV
3
4
       using PyCall
5
       using Conda
       using Dates
6
       using Plots
       using Statistics
9
       using StatsBase
       using StatsPlots
11 end
```

Packages Installed

- Pluto maintains it's own package environment per-notebook
- The checkmark means it is installed.
- The little cloud icon means it will be installed when ran

```
Selection deleted
```

```
1 md"""
2 ## Packages Installed
4 - Pluto maintains it's own package environment per-notebook
5 - The checkmark means it is installed.
6 - The little cloud icon means it will be installed when ran
  11 11 11
```

	variable	mean	min	median	max
1	:Timestamp	nothing	"2023-01-01 00:00:00"	nothing	"2023-04-05 00
2	:Type	nothing	"Sleep Hours"	nothing	"Weight Pounds
3	:Value	7.51523	0.0	3.05	205.3
4	:ParsedTimestamp	nothing	2023-01-01T00:00:00	2023-02-19T00:00:00	2023-04-05T00:

```
begin
workouts = CSV.read("workouts.csv", DataFrame);
metrics = CSV.read("metrics.csv", DataFrame);

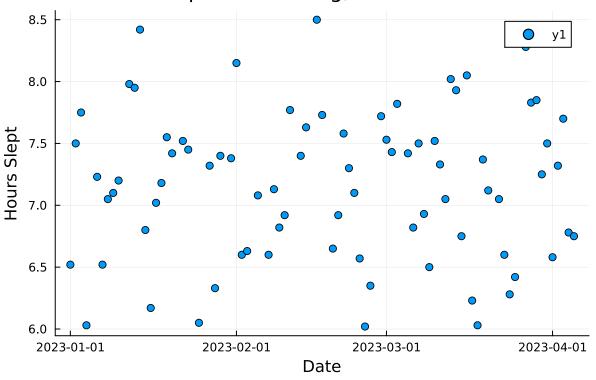
# Start with some average time in each stage. Timestamp should be in a more usable  # format.
metrics.ParsedTimestamp = DateTime.(metrics.Timestamp, dateformat"y-m-d H:M:S")
describe(metrics)
end
```

First Steps

- Usually a good idea to describe the dataframe that you have
- Peform any cleaning needed

New Columns

- Defined using the . format
- Uses broadcast over the existing Timestamp column that is a string
- Better for plotting and programmatic usage.


```
1 md"""
2 ## First Steps
3
4 - Usually a good idea to describe the dataframe that you have
Selectionedeletedny cleaning needed
6
7 ## New Columns
8
9 - Defined using the '.' format
10 - Uses broadcast over the existing Timestamp column that is a string
11 - Better for plotting and programmatic usage.
12 """
```

Sleep During Training

- How well did I sleep during training?
- Was I consistent in my sleep?
- · Hypothesis, probably not

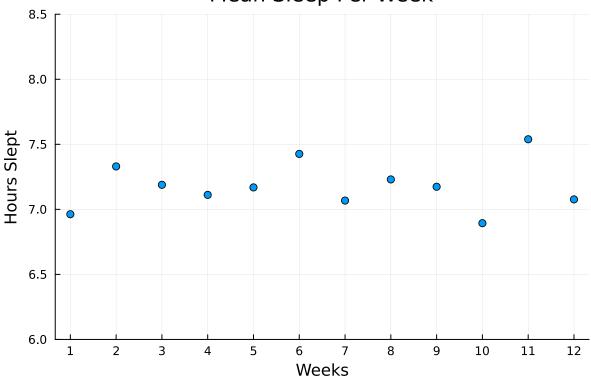
```
1 md"""
2 ## Sleep During Training
3
4 - How well did I sleep during training?
5 - Was I consistent in my sleep?
6 - Hypothesis, probably not
7 """
```

Sleep over Training, Parent Edition


```
1 begin
2  # Sleep data, with outliers trimmed (didn't wear my watch)
3  row_selector = (metrics.Type .== "Sleep Hours") .&& (metrics.Value .< 9.) .&& (metrics.Value .> 6)

Selection deleted
5  sleep_hours = metrics[row_selector, [:Value, :ParsedTimestamp]]
6
7  # Plot it
8  scatter(sleep_hours.ParsedTimestamp, sleep_hours.Value, xlabel="Date", ylabel="Hours Slept", title="Sleep over Training, Parent Edition")
9 end
```

Answer


- No, I was not consistent in my sleep at all.
- Probably due to toddler
- Or potty training
- Or having aching legs...
- I digress.

Follow up

Were my averages week to week consistent?

```
1 md"""
2 ## Answer
3
4 - No, I was not consistent in my sleep at all.
5 - Probably due to toddler
6 - Or potty training
7 - Or having aching legs...
8 - I digress.
9
10 ### Follow up
11
12 Were my averages week to week consistent?
13 """
```

Mean Sleep Per Week


```
begin
weeks = length(sleep_hours.Value) ÷ 7
week_sleeps = [sleep_hours.Value[i:min(i+7, length(sleep_hours.Value))] for i ∈
1:7:length(sleep_hours.Value)]
mean_week_sleeps = mean.(week_sleeps)

scatter(1:length(mean_week_sleeps), mean_week_sleeps, ylims=(6.0, 8.5),
xticks=1:1:length(mean_week_sleeps), ylabel="Hours Slept", xlabel="Weeks",
title="Mean Sleep Per Week", legend=false)

end
```

Answer

- Yes, my averages week to week were consistent.
- Between 7-7.5 hours of sleep usually.

Methodology

- Creates segments of max length 7 sleep observations
- Takes the mean of each segment
- Plot those means

Next Up

• Reading my workout data

```
1 md"""
2 ## Answer
3
4 - Yes, my averages week to week were consistent.
5 - Between 7-7.5 hours of sleep usually.
6
7 ## Methodology
8
9 - Creates segments of max length 7 sleep observations
10 - Takes the mean of each segment
11 - Plot those means
12
13 ## Next Up
14
15 - Reading my workout data
16 """
```

Reading Workout Data

- · Data is stored in .FIT files
- I failed to write the Garmin FIT SDK in time for Julia
- Use PyCall and Garmin's Python SDK!

```
1 md"""
2 ## Reading Workout Data
3
4 - Data is stored in .FIT files
5 - I failed to write the Garmin FIT SDK in time for Julia
6 - Use PyCall and Garmin's Python SDK!
7 """
```

```
begin

# Install the Garmin SDK into our Notebook environment.

Conda.pip_interop(true)

Conda.pip("install", "/Users/jacobwindle/Downloads/FitSDKRelease_21.105.00/py")

end
```

Running `conda config --set pip_interop_enabled true --file /Users/jacobwindle/.julia/conda/3/aarch64/condarc-julia.yml` in root environment

Running 'pip install /Users/jacobwindle/Downloads/FitSDKRelease_21.105.00/py' in root environment

```
Processing /Users/jacobwindle/Downloads/FitSDKRelease_21.105.00/py
                                                                                    (?)
       Installing build dependencies: started
       Installing build dependencies: finished with status 'done'
       Getting requirements to build wheel: started
       Getting requirements to build wheel: finished with status 'done'
       Preparing metadata (pyproject.toml): started
       Preparing metadata (pyproject.toml): finished with status 'done'
     Building wheels for collected packages: garmin-fit-sdk
       Building wheel for garmin-fit-sdk (pyproject.toml): started
       Building wheel for garmin-fit-sdk (pyproject.toml): finished with status 'don
       Created wheel for garmin-fit-sdk: filename=garmin_fit_sdk-21.105.0-pv2.pv3-no
     ne-any.whl size=134176 sha256=10bc4195228a000d8e2458265e5583043a13df91dfe5e8e3d
     4b0047a1ca529e6
       Stored in directory: /private/var/folders/mr/vq80v4cn4rgdtl1pbfrcfvvr0000gp/
     T/pip-ephem-wheel-cache-06p5moqu/wheels/ce/6d/b8/b728a6064b9404f496915e7dec78a1
     d6ce0927e9e2d73bbe8a
     Successfully built garmin-fit-sdk
Selection deleted collected packages: garmin-fit-sdk
       Attempting uninstall: garmin-fit-sdk
         Found existing installation: garmin-fit-sdk 21.105.0
         Uninstalling garmin-fit-sdk-21.105.0:
           Successfully uninstalled garmin-fit-sdk-21.105.0
     Successfully installed garmin-fit-sdk-21.105.0
```

Python Interop

- Useful because I failed at writing the FIT SDK
- Use Pip interop in this case, install with local filepath
- Now time to read all the FIT files

```
1 md"""
2 ## Python Interop
3
4 - Useful because I failed at writing the FIT SDK
5 - Use Pip interop in this case, 'install' with local filepath
6 - Now time to read all the FIT files
7 """
```

```
[Dict("79" \Rightarrow [Dict( more)], "lap_mesgs" \Rightarrow [Dict( more), Dict( more), Dict( more)]
```

```
1 begin
 2
       @pyimport garmin_fit_sdk
 3
       fit_files = readdir("./fit_files"; join=true)
 4
 5
       function decode_fit_file(fp::AbstractString)::Tuple{Any,Any}
 6
            stream = garmin_fit_sdk.Stream.from_file(fp)
 7
            decoder = garmin_fit_sdk.Decoder(stream)
 8
9
                decoder.read()
10
           finally
11
12
                stream.close()
13
           end
14
       end
15
       decoded = []
16
       for file ∈ fit_files
17
           push!(decoded, decode_fit_file(file))
18
19
       end
20
21
       decoded_fit_files = [dc[1] for dc in decoded]
22 end
```

Reading the FIT files

- Function decodefitfile will use the Garmin Python SDK to read fit file
- Use combo listcomp and broadcast to decode all files

Getting my Heartrate Data

- From clicking through data, all heartrate information is in record_mesgs
- Convert record_mesgs into a dataframe for each date

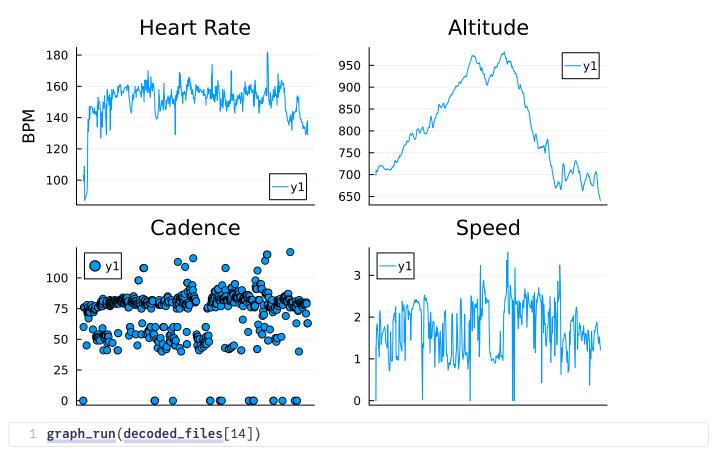
```
1 md"""
2 ## Reading the FIT files
3
4 - Function decode_fit_file will use the Garmin Python SDK to read fit file
5 - Use combo listcomp and broadcast to decode all files
6
7 ## Getting my Heartrate Data
8
9 - From clicking through data, all heartrate information is in `record_mesgs`
10 - Convert `record_mesgs` into a dataframe for each date
11 """
```

	altitude	distance	position_lat	heart_rate	enhanced_spe
1	542.0	0.0	433472571	90	1.344
2	542.0	1.42	433472469	90	1.325
3	543.8	19.84	433471179	86	2.911
4	545.8	32.86	433470431	90	2.799
5	546.2	35.65	433470266	94	2.799
6	546.8	38.42	433470114	98	2.79
7	547.2	41.19	433469959	103	2.762
8	547.8	44.2	433469806	109	2.762
9	548.0	47.25	433469642	114	2.781
10	548.4	50.44	433469481	119	2.837
m	ore				
418	505.4	7356.13	433260335	150	2.687
	2 3 4 5 6 7 8 9 10	1 542.0 2 542.0 3 543.8 4 545.8 5 546.2 6 546.8 7 547.2 8 547.8 9 548.0 10 548.4 more	1 542.0 0.0 2 542.0 1.42 3 543.8 19.84 4 545.8 32.86 5 546.2 35.65 6 546.8 38.42 7 547.2 41.19 8 547.8 44.2 9 548.0 47.25 10 548.4 50.44 more	1 542.0 0.0 433472571 2 542.0 1.42 433472469 3 543.8 19.84 433471179 4 545.8 32.86 433470431 5 546.2 35.65 433470266 6 546.8 38.42 433470114 7 547.2 41.19 433469959 8 547.8 44.2 433469806 9 548.0 47.25 433469642 10 548.4 50.44 433469481 more	1 542.0 0.0 433472571 90 2 542.0 1.42 433472469 90 3 543.8 19.84 433471179 86 4 545.8 32.86 433470431 90 5 546.2 35.65 433470266 94 6 546.8 38.42 433470114 98 7 547.2 41.19 433469959 103 8 547.8 44.2 433469806 109 9 548.0 47.25 433469642 114 10 548.4 50.44 433469481 119 more

```
1 begin
 2
       function string_keys(d::Dict{Any,Any})::Dict{String,Any}
           Dict([k => v for (k, v) in d if k isa AbstractString])
 3
 4
       end
 5
 6
       function extract_record_and_timestamp(fit_file::Dict{Any, Any})
           ts = DateTime(fit_file["activity_mesgs"][1]["timestamp"])
 7
           messages = string_keys.(fit_file["record_mesgs"])
 8
 9
10
           try
               ts, DataFrame(messages)
11
12
           catch
13
               nothing
14
           end
15
       end
16
       decoded_files = extract_record_and_timestamp.(decoded_fit_files)
17
18 end
19
```

Mapping my data to DataFrame

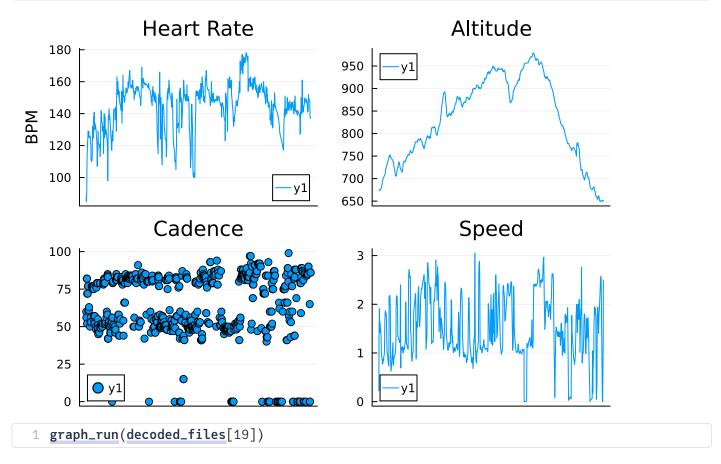
- Extract the data needed
- Write function that pulls data out of PyDict


```
1 md"""
2
3 ## Mapping my data to DataFrame
4
5 - Extract the data needed
6 - Write function that pulls data out of PyDict
7
8 """
```

	variable	mean	min	median	
1	:altitude	506.938	471.8	500.6	558.4
2	:distance	3535.39	0.0	3474.36	7356.
3	:position_lat	4.33296e8	433204250	4.3326e8	43347
4	:heart_rate	145.935	86	146.0	166
5	:enhanced_speed	2.74143	0.0	2.827	3.863
6	:fractional_cadence	0.239234	0.0	0.0	0.5
7	:speed	2.74143	0.0	2.827	3.863
8	:position_long	-9.82415e8	-982694531	-9.82404e8	-9821
9	:cadence	80.9234	0	82.0	89
10	:enhanced_altitude	506.938	471.8	500.6	558.4
11	:timestamp	nothing	2023-01-02T16:08:19	2023-01-02T16:28:42.500	2023-

```
1 describe(decoded_files[1][2])
```

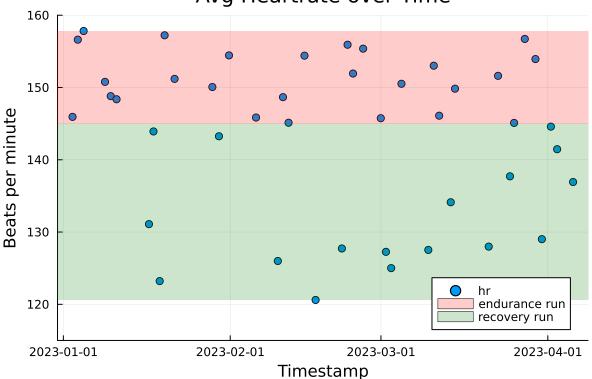
graph_run (generic function with 1 method)


```
1 begin
 2
       # A generic graph_run function
 3
       function graph_run(decoded_file::Tuple{DateTime, DataFrame})
           label = "Run on $(decoded_file[1])"
 4
           df = decoded_file[2]
 5
           l = @layout [a b; c d]
 6
           p = plot(df."timestamp", df."heart_rate"; title="Heart Rate", ylabel="BPM",
 7
           xticks=nothing)
           p2 = plot(df.timestamp, df.altitude; title="Altitude", xticks=nothing)
 8
 9
           p3 = scatter(df.timestamp, df.cadence, title="Cadence", xticks=nothing)
           p4 = plot(df.timestamp, df.speed; title="Speed", xticks=nothing)
10
11
           plot(p, p2, p3, p4, layout = l)
12
       end
13 end
```


Graphing Runs

- Show speed, cadence, heartrate, and altitude
- Trail runs appear to have varied cadence, road runs are more stable

```
1 md"""
2 ## Graphing Runs
3
4 - Show speed, cadence, heartrate, and altitude
5 - Trail runs appear to have varied cadence, road runs are more stable
6 """
```

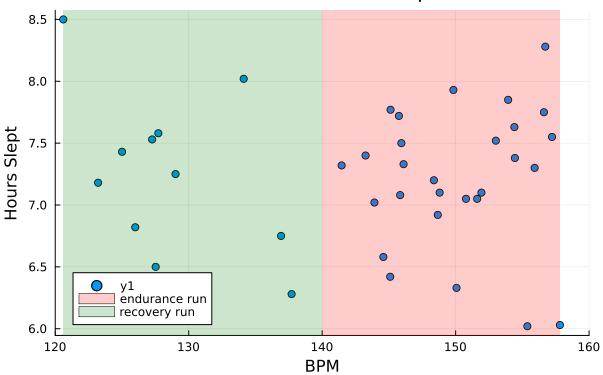


Trends across Training

- What was my average heartrate for each run?
- Was my average heartrate effected by sleep?

```
1 md"""
2 ## Trends across Training
3
4 - What was my average heartrate for each run?
5 - Was my average heartrate effected by sleep?
6 """
```

Avg Heartrate over Time


```
1
   begin
 2
       function calc_avgs(data::Union{Nothing, Tuple{DateTime, DataFrame}})
3
           if isnothing(data)
               return nothing
4
 5
           end
 6
           try
               return (timestamp=data[1], mean_hr=mean(data[2].heart_rate),
 7
               mean_cadence=mean(data[2].cadence), mean_alt=mean(data[2].altitude))
8
           catch
9
               return nothing
10
           end
11
       end
12
       avg_heartrates = DataFrame(filter(f -> !isnothing(f), calc_avgs.(decoded_files)))
13
14
       ps = scatter(avg_heartrates.timestamp, avg_heartrates.mean_hr, title="Avg
15
       Heartrate over Time", label="hr", xlabel="Timestamp", ylabel="Beats per minute",
       ylims=(115, 160))
       hspan!(ps, [145, maximum(avg_heartrates.mean_hr)]; color=:red, alpha=0.2,
16
       label="endurance run")
       hspan!(ps, [minimum(avg_heartrates.mean_hr), 145]; color=:green, alpha=0.2,
17
       label="recovery run")
18 end
```

Determining if Heartrate was affected by sleep

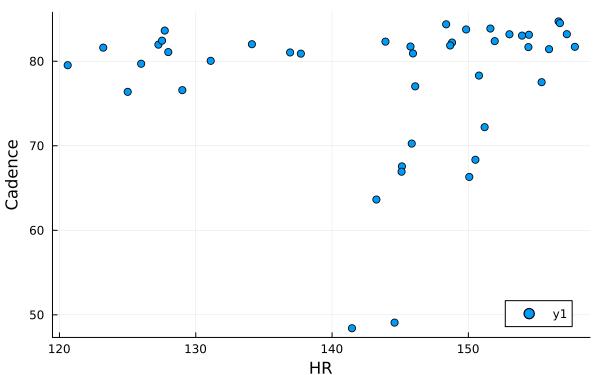
- Will need to use the workouts to determine which days were endurance runs
- Find sleep data for same day
- Stitch together to see results

```
1 md"""
2 ## Determining if Heartrate was affected by sleep
3
4 - Will need to use the workouts to determine which days were endurance runs
5 - Find sleep data for same day
6 - Stitch together to see results
7 """
```

Heartrate over Sleep


```
1
   begin
 2
       # Copy the existing dataframe.
3
       hr_sleep_df = deepcopy(avg_heartrates)
4
       # Get the days that we have an endurance run
 5
       my_endurance_days = workouts[:, :WorkoutDay]
 6
 7
8
       my_endurance_selector = [d in my_endurance_days for d in Date.
       (hr_sleep_df.timestamp)]
9
       my_endurance_days_df = hr_sleep_df[my_endurance_selector, :]
10
       my_endurance_days_df.Date = Date.(my_endurance_days_df.timestamp)
11
12
       sleep_on_endurance_days = [d in my_endurance_days for d in Date.
13
       (sleep_hours.ParsedTimestamp)]
       sleep_on_endurance_days_df = sleep_hours[sleep_on_endurance_days, :]
14
15
       sleep_on_endurance_days_df.Date = Date.
       (sleep_on_endurance_days_df.ParsedTimestamp)
16
17
       sleep_hr_df = leftjoin(my_endurance_days_df, sleep_on_endurance_days_df; on =
       :Date)
       ns = scatter(sleep_hr_df.mean_hr, sleep_hr_df.Value; xlims=(120, 160),
18
       title="Heartrate over Sleep", xlabel="BPM", ylabel="Hours Slept")
19
       vspan!(ns, [140, maximum(sleep_hr_df.mean_hr)]; color=:red, alpha=0.2,
       label="endurance run")
       vspan!(ns, [minimum(sleep_hr_df.mean_hr), 140]; color=:green, alpha=0.2,
20
       label="recovery run")
21 end
```

Findings


- No discernible relationship
- Appears to have clusters, left half is recovery, right half is endurance

Next Question

• Does Cadence Affect HR?

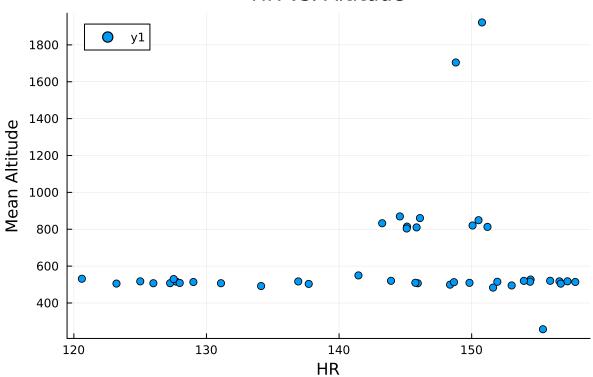
```
1 md"""
2 ## Findings
3
4 - No discernible relationship
5 - Appears to have clusters, left half is recovery, right half is endurance
6
7 ## Next Question
8
9 - Does Cadence Affect HR?
10 """
```

HR vs. Cadence


```
begin
cadence_hr_df = deepcopy(avg_heartrates)

# cadence_hr_df.Date = Date.(cadence_hr_df.timestamp)
scatter(cadence_hr_df.mean_hr, cadence_hr_df.mean_cadence; xlabel="HR",
ylabel="Cadence", title="HR vs. Cadence")
end
```

Findings


• No relationship, because I always ran with the same cadence!

Next Question

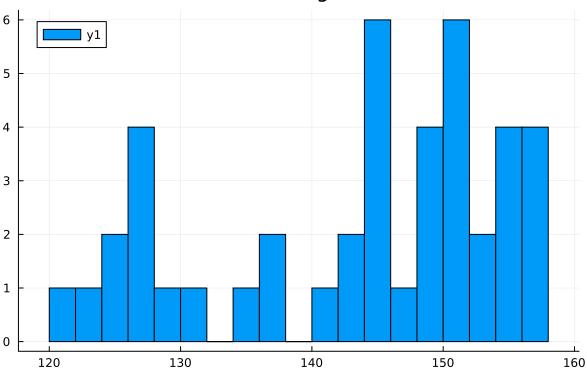
Does altitude affect HR?

```
1 md"""
2 ## Findings
3
4 - No relationship, because I always ran with the same cadence!
5
6 ## Next Question
7
8 - Does altitude affect HR?
9 """
```

HR vs. Altitude


```
begin
altitude_hr_df = deepcopy(avg_heartrates)
scatter(altitude_hr_df.mean_hr, altitude_hr_df.mean_alt; xlabel="HR",
    ylabel="Mean Altitude", title="HR vs. Altitude")
end
```

Findings


- Altitude does appear to affect heart rate.
- Majority of runs were not at altitude, show normal distribution
- Runs at higher altitudes appear to cluster at higher HR

Next Questions

• Do my data follow the normal distribution?

```
1 md"""
2 # Findings
3
4 - Altitude does appear to affect heart rate.
5 - Majority of runs were not at altitude, show normal distribution
6 - Runs at higher altitudes appear to cluster at higher HR
7
8 # Next Questions
9
10 - Do my data follow the normal distribution?
11 """
```

HR Histogram


```
begin
d = fit(UnitRangeTransform, avg_heartrates.mean_hr)
hr_normalized = StatsBase.transform(d, avg_heartrates.mean_hr)

avg_heartrates.hr_normalized = hr_normalized
    @df avg_heartrates histogram(:mean_hr; bins=25, title="HR Histogram")
end
```

Findings

- Kind of normally distributed, but have two clusters
- Recovery vs. Endurance again!

```
1 md"""
2 ## Findings
3
4 - Kind of normally distributed, but have two clusters
5 - Recovery vs. Endurance again!
6 """
```